39.6k views
5 votes
If cos Θ = square root 2 over 2 and 3 pi over 2 < Θ < 2π, what are the values of sin Θ and tan Θ? sin Θ = square root 2 over 2; tan Θ = −1 sin Θ = negative square root 2 over 2; tan Θ = 1 sin Θ = square root 2 over 2; tan Θ = negative square root 2 sin Θ = negative square root 2 over 2; tan Θ = −1

User Afiefh
by
5.3k points

1 Answer

7 votes

Answer:


\huge\boxed{\sin\theta=-(\sqrt2)/(2);\ \tan\theta=-1}

Explanation:

We have:


\\cos\theta=(\sqrt2)/(2),\ (3\pi)/(2)<\theta<2\pi

For sine use:


\sin^2x+\cos^2x=1\to\sin^2x=1-\cos^2x

Substitute:


\sin^2\theta=1-\left((\sqrt2)/(2)\right)^2\\\\\sin^2\theta=1-((\sqrt2)^2)/(2^2)\\\\\sin^2\theta=1-(2)/(4)\\\\\sin^2\theta=(4)/(4)-(2)/(4)\\\\\sin^2\theta=(4-2)/(4)\\\\\sin^2\theta=(2)/(4)\to\sin\theta=\pm\sqrt{(2)/(4)}\\\\\sin\theta=\pm(\sqrt2)/(\sqrt4)\\\\\sin\theta=\pm(\sqrt2)/(2)

θ in IV quadrant, therefore sine is negative.


\sin\theta=-(\sqrt2)/(2)

For tangent use:


\tan x=(\sin x)/(\cos x)

Substitute:


\tan\theta=(-(\sqrt2)/(2))/((\sqrt2)/(2))=-(\sqrt2)/(2)\cdot(2)/(\sqrt2)=-1

User Jfu
by
5.9k points