47.9k views
4 votes
Draw a rectangle that has a perimeter of 20 units and an area of 25 square units

User Avizzini
by
4.7k points

1 Answer

5 votes

Step-by-step explanation:

For any rectangle the dimensions are given by:


w:width \\ \\ l:Length

So the perimeter (P) is given by the following equation:


P=2(w+l)

And the area is:


A=w* l

We know that:


P=20units \\ \\ A=25units^2

By substituting:


20=2(w+l) \\ \\ \therefore w+l=10 \ \ldots eq1 \\ \\ \\ 25=w* l \ldots eq2

Solving for
w from eq1:


w=10-l

Substituting into eq2:


25=(10-l)* l

Then:


\text{Solving for l:} \\ \\ \\ 10l-l^2=25 \\ \\ 10l-l^2-25=25-25 \\ \\ -l^2+10l-25=0 \\ \\ x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a) \\ \\ \\ a=-1,\:b=10,\:c=-25 \\ \\ \\ l_(1,\:2)=(-10\pm √(10^2-4\left(-1\right)\left(-25\right)))/(2\left(-1\right)) \\ \\ l_(1,\:2)=(-10\pm √(0))/(2\left(-1\right)) \\ \\ l=5

Solving for w:


w=10-5=5

So this rectangle is a square and is shown below.

Draw a rectangle that has a perimeter of 20 units and an area of 25 square units-example-1
User RonC
by
4.3k points