Answer:
The ratio of he radius of the motion of particle A to that of particle B is closest to 1.16.
Step-by-step explanation:
Let
are accelerations of particle and radius of A and B respectively. It is given that :
![a_A=7.3* a_B\\\\(a_A)/(a_B)=7.3\\\\and\\\\T_B=2.5* T_A\\(T_B)/(T_A)=2.5](https://img.qammunity.org/2021/formulas/physics/college/wfwq58msjf5pbmpkb3s0dni6rz7yy4dva3.png)
The centripetal acceleration is given by the formula as :
![a=(v^2)/(r)](https://img.qammunity.org/2021/formulas/physics/college/ifv93bjrfkw7ps4nsn2lc1ym6fwt2v7muk.png)
r is the radius of motion
Since,
![v=(2\pi r)/(T)](https://img.qammunity.org/2021/formulas/physics/college/fvhnuisy1sb9s6d61unaygljfp0s8kg6xt.png)
![a=(4\pi ^2r)/(T^2)](https://img.qammunity.org/2021/formulas/physics/college/b5wwg8a4aui0y6wwsk2hgmhl92stnitinm.png)
For A
.........(1)
For B
...........(2)
Dividing equation (1) and (2) we get :
![(a_A)/(a_B)=(T^2_B* r_A)/(T^2_A* r_B)](https://img.qammunity.org/2021/formulas/physics/college/8oiobthdp4qffsd8pj5s4ny6aeksf16bd3.png)
![(r_A)/(r_B)=(a_A* T^2_A)/(a_B* T^2_B)](https://img.qammunity.org/2021/formulas/physics/college/3y4d2cz497uw5y608jgdd5xxwf1dauzcnc.png)
Now using given conditions :
![(r_A)/(r_B)=(7.3)/((2.5)^2)\\\\(r_A)/(r_B)=1.16](https://img.qammunity.org/2021/formulas/physics/college/h5egzzz6kxxg2yu2y71tqi2yoq191p3m87.png)
So, the ratio of he radius of the motion of particle A to that of particle B is closest to 1.16.