Option C:
The coefficient of
is 40.
Solution:
Given expression:
![(2 x+y)^(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/76grqnrdhrgdrjla1fkc9xf9toklt5lij9.png)
Using binomial theorem:
![(a+b)^(n)=\sum_(i=0)^(n)\left(\begin{array}{l}n \\i\end{array}\right) a^((n-i)) b^(i)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qrwevnqidthmznx7e0dx5b70hpw5nc5aht.png)
Here
![a=2 x, b=y](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1mdbg9b81qek4qqcrten4agyudyuo4hjry.png)
Substitute in the binomial formula, we get
![(2x+y)^5=\sum_(i=0)^(5)\left(\begin{array}{l}5 \\i\end{array}\right)(2 x)^((5-i)) y^(i)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/v0at85ytpwy0vtutmtvbywh5u0bpfnc0aw.png)
Now to expand the summation, substitute i = 0, 1, 2, 3, 4 and 5.
![$=(5 !)/(0 !(5-0) !)(2 x)^(5) y^(0)+(5 !)/(1 !(5-1) !)(2 x)^(4) y^(1)+(5 !)/(2 !(5-2) !)(2 x)^(3) y^(2)+(5 !)/(3 !(5-3) !)(2 x)^(2) y^(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/v2okgz794sf8xhpu6d9kma7w0036an5n2a.png)
![$+(5 !)/(4 !(5-4) !)(2 x)^(1) y^(4)+(5 !)/(5 !(5-5) !)(2 x)^(0) y^(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/feyj0z0qmtn6915uclg61ti3pwq7g7vkek.png)
Let us solve the term one by one.
![$(5 !)/(0 !(5-0) !)(2 x)^(5) y^(0)=32 x^(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/u6ba7rck738vcvln0chsvib0fsucuio1ry.png)
![$(5 !)/(1 !(5-1) !)(2 x)^(4) y^(1) = 80 x^(4) y](https://img.qammunity.org/2021/formulas/mathematics/middle-school/l4aj8r0c58o4dhbwldy6n4m08dqfjn0dg3.png)
![$(5 !)/(2 !(5-2) !)(2 x)^(3) y^(2)= 80 x^(3) y^(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/u2id8zx3bxeq39dw9r3t7byon8kh2c2o48.png)
![$(5 !)/(3 !(5-3) !)(2 x)^(2) y^(3)= 40 x^(2) y^(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8qxwzsrdi6z6pe24pckky12gggw3i4wa5t.png)
![$(5 !)/(4 !(5-4) !)(2 x)^(1) y^(4)= 10 x y^(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vv7zx1shnvjsg9c4thkcoe5lo82d3ik18l.png)
![$(5 !)/(5 !(5-5) !)(2 x)^(0) y^(5)=y^(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/siy8jgozpmf9j2igjvmtpwbso79dpbhoki.png)
Substitute these into the above expansion.
![(2x+y)^5=32 x^(5)+80 x^(4) y+80 x^(3) y^(2)+40 x^(2) y^(3)+10 x y^(4)+y^(5)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ct8vugzcrdgmtr37c0jeuag4sgb8xjqbye.png)
The coefficient of
is 40.
Option C is the correct answer.