43.1k views
5 votes
Free Response Questions

20. A quadratic function has a turning point at (3,8). Selected values for the function are shown in the table
below
(a) Finish filling out the table.
(b) State the zeroes of the function.

Free Response Questions 20. A quadratic function has a turning point at (3,8). Selected-example-1

1 Answer

3 votes

Answer:

Step-by-step explanation:

let the quadratic function be y=ax^2+bx+c

when x=1,y=0

0=a+b+c ...(1)

when x=3,y=8

8=9a+3b+c ...(2)

when x=4,y=6

6=16a+4b+c ...(3)

(2)-(1) gives

8a+2b=8

or 4a+b=4 ...(4)

(3)-(2) gives

7a+b=-2 ...(5)

(4)-(5) gives

-3a=4+2=6

a=-2

from (4)

4(-2)+b=4

b=4+8=12

from (1)

-2+12+c=0

10+c=0

c=-10

so y=-2x²+12x-10

when x=-1,y=-2(-1)²+12(-1)-10=-2-12-10=-24

when x=2,y=-2(2)²+12(2)-10=-8+24-10=6

when x=5,y=-2(5)²+12(5)-10=-50+60-10=0

when x=6,y=-2(6)²+12(6)-10=-72+72-10=-10

b. to find the zeroes

-2x²+12x-10=0

x²-6x+5=0

x²-x-5x+5=0

x(x-5)-1(x-5)=0

(x-5)(x-1)=0

x=5,1

so zeroes are at x=1,5

21.

f(x)=x²+4x-1

=x²+4x+4-4-1

=(x+2)²-5

it is an upward parabola with vertex at(-2,-5)

when x=-6,y=(-6+2)²-5=16-6=11

when x=-5,y=(-5+2)²-5=9-5=4

x=-4, y=(-4+2)²-5=4-5=-1

x=-3,y=(-3+2)²-5=1-5=-4

x=1,y=(1+2)²-5=9-5=4

x=2,y=(2+2)²-5=16-5=11

join these points you get the graph.

f(x) is increasing if f'(x)>0

f'(x)=2x+4

2x+4>0

x>-2

or -2≤x≤2

c. x=0 lies in the interval -2≤x≤2

or in f'(x)>0

also when x=0

f(x)=-1 or in f(x)<0

User Honghao Z
by
4.8k points