174k views
4 votes

\left \{ {{x+y=1} \atop {x-2y=4}} \right. \\\left \{ {{4x-y=6} \atop {x-y=0}} \right. \\\left \{ {{-x+2y=0} \atop {x+2y=5}} \right. \\\left \{ {{6x-y=-5} \atop {4x-2y=6}} \right.

These questions need to be solved using Cramer's Rule, If you could please show the work as well, if that's possible, I'd appreciate it!

1 Answer

4 votes

Answer:

(a) x=2, y=-1

(b) x=2, y=2

(c)
\displaystyle x=(5)/(2), y=(5)/(4)

(d) x=-2, y=-7

Explanation:

Cramer's Rule

It's a predetermined sequence of steps to solve a system of equations. It's a preferred technique to be implemented in automatic digital solutions because it's easy to structure and generalize.

It uses the concept of determinants, as explained below. Suppose we have a 2x2 system of equations like:


\displaystyle \left \{ {{ax+by=p} \atop {cx+dy=q}} \right.

We call the determinant of the system


\Delta=\begin{vmatrix}a &b \\c &d \end{vmatrix}

We also define:


\Delta_x=\begin{vmatrix}p &b \\q &d \end{vmatrix}

And


\Delta_y=\begin{vmatrix}a &p \\c &q \end{vmatrix}

The solution for x and y is


\displaystyle x=(\Delta_x)/(\Delta)


\displaystyle y=(\Delta_y)/(\Delta)

(a) The system to solve is


\displaystyle \left \{ {{x+y=1} \atop {x-2y=4}} \right.

Calculating:


\Delta=\begin{vmatrix}1 &1 \\1 &-2 \end{vmatrix}=-2-1=-3


\Delta_x=\begin{vmatrix}1 &1 \\4 &-2 \end{vmatrix}=-2-4=-6


\Delta_y=\begin{vmatrix}1 &1 \\1 &4 \end{vmatrix}=4-3=3


\displaystyle x=(\Delta_x)/(\Delta)=(-6)/(-3)=2


\displaystyle y=(\Delta_y)/(\Delta)=(3)/(-3)=-1

The solution is x=2, y=-1

(b) The system to solve is


\displaystyle \left \{ {{4x-y=6} \atop {x-y=0}} \right.

Calculating:


\Delta=\begin{vmatrix}4 &-1 \\1 &-1 \end{vmatrix}=-4+1=-3


\Delta_x=\begin{vmatrix}6 &-1 \\0 &-1 \end{vmatrix}=-6-0=-6


\Delta_y=\begin{vmatrix}4 &6 \\1 &0 \end{vmatrix}=0-6=-6


\displaystyle x=(\Delta_x)/(\Delta)=(-6)/(-3)=2


\displaystyle y=(\Delta_y)/(\Delta)=(-6)/(-3)=2

The solution is x=2, y=2

(c) The system to solve is


\displaystyle \left \{ {{-x+2y=0} \atop {x+2y=5}} \right.

Calculating:


\Delta=\begin{vmatrix}-1 &2 \\1 &2 \end{vmatrix}=-2-2=-4


\Delta_x=\begin{vmatrix}0 &2 \\5 &2 \end{vmatrix}=0-10=-10


\Delta_y=\begin{vmatrix}-1 &0 \\1 &5 \end{vmatrix}=-5-0=-5


\displaystyle x=(\Delta_x)/(\Delta)=(-10)/(-4)=(5)/(2)


\displaystyle y=(\Delta_y)/(\Delta)=(-5)/(-4)=(5)/(4)

The solution is


\displaystyle x=(5)/(2), y=(5)/(4)

(d) The system to solve is


\displaystyle \left \{ {{6x-y=-5} \atop {4x-2y=6}} \right.

Calculating:


\Delta=\begin{vmatrix}6 &-1 \\4 &-2 \end{vmatrix}=-12+4=-8


\Delta_x=\begin{vmatrix}-5 &-1 \\6 &-2 \end{vmatrix}=10+6=16


\Delta_y=\begin{vmatrix}6 &-5 \\4 &6 \end{vmatrix}=36+20=56


\displaystyle x=(\Delta_x)/(\Delta)=(16)/(-8)=-2


\displaystyle y=(\Delta_y)/(\Delta)=(56)/(-8)=-7

The solution is x=-2, y=-7

User Abdoutelb
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories