51.1k views
3 votes
What is the solution set of the following equation?

4/5x2 = 2x - 4/5
{1, 2}
{1, 1/2}
(2,1/2)​

User Aswathy
by
5.7k points

1 Answer

2 votes

Answer:


\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}


x=2,\:x=(1)/(2)

Explanation:

Given


(4)/(5)x^2=2x-(4)/(5)


\mathrm{Multiply\:both\:sides\:by\:}5


(4)/(5)x^2\cdot \:5=2x\cdot \:5-(4)/(5)\cdot \:5


\mathrm{Simplify}


4x^2=10x-4


\mathrm{Add\:}4\mathrm{\:to\:both\:sides}


4x^2+4=10x-4+4


4x^2+4=10x


\mathrm{Subtract\:}10x\mathrm{\:from\:both\:sides}


4x^2+4-10x=10x-10x


4x^2-10x+4=0


\mathrm{Quadratic\:Equation\:Formula:}


\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}


x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)


\mathrm{For\:}\quad a=4,\:b=-10,\:c=4:\quad x_(1,\:2)=(-\left(-10\right)\pm √(\left(-10\right)^2-4\cdot \:4\cdot \:4))/(2\cdot \:4)


x=(-\left(-10\right)+√(\left(-10\right)^2-4\cdot \:4\cdot \:4))/(2\cdot \:4)


=(10+√(\left(-10\right)^2-4\cdot \:4\cdot \:4))/(2\cdot \:4)


=(10+√(36))/(2\cdot \:4)
10+√(\left(-10\right)^2-4\cdot \:4\cdot \:4)=10+√(36)


=(10+√(36))/(8)


=(10+6)/(8)


=(16)/(8)

Similarly,


=(-\left(-10\right)-√(\left(-10\right)^2-4\cdot \:4\cdot \:4))/(2\cdot \:4):\quad (1)/(2)

Thus,


\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}


  • x=2,\:x=(1)/(2)
User Nevrome
by
4.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.