38.0k views
0 votes
What is the solution of log(t-3) = log(17-4t)?

2 Answers

6 votes

Answer:


\mathrm{The\:solution\:is}:


t=4

Explanation:

Given the expression


log\left(t-3\right)\:=\:log\left(17-4t\right)


\mathrm{Apply\:log\:rule:\:\:If}\:\log _b\left(f\left(x\right)\right)=\log _b\left(g\left(x\right)\right)\:\mathrm{then}\:f\left(x\right)=g\left(x\right)


t-3=17-4t


\mathrm{Add\:}3\mathrm{\:to\:both\:sides}


t-3+3=17-4t+3


t=-4t+20


\mathrm{Add\:}4t\mathrm{\:to\:both\:sides}


t+4t=-4t+20+4t


5t=20


\mathrm{Divide\:both\:sides\:by\:}5


(5t)/(5)=(20)/(5)


t=4

Therefore,
\mathrm{the\:solution\:is}:


t=4

User Michael Quiles
by
3.6k points
4 votes

Answer:

t=4

Explanation:

The given logarithmic equation is:


\ log(t - 3) = \ log(17 - 4t)

We want to solve for,

We take antilogarithm to get:


t - 3 = 17 - 4t

Combine similar terms to get:


t + 4t = 17 + 3

Simplify to obtain:


5t = 20

Divide both sides by 5


t = (20)/(5) = 4

User Bjoerg
by
3.0k points