157k views
2 votes
The value of good wine increases with age. Thus, if you are a wine dealer, you have the problem of deciding whether to sell your wine now, at a price of $P a bottle, or to sell it later at a higher price. Suppose you know that the amount a wine-drinker is willing to pay for a bottle of this wine t years from now is $P(1 + 20). Assuming continuous compounding and a prevailing interest rate of 5% per year, when is the best time to sell your wine?

1 Answer

2 votes

Answer: 64 years

Explanation:

Let assume the dealer sold the bottle now for $P, then invested that money at 5% interest. The return would be:

R1 = P(1.05)^t,

This means that after t years, the dealer would have the total amount of:

$P×1.05^t.

If the dealer prefer to wait for t years from now to sell the bottle of wine, then he will get the return of:

R2 = $P(1 + 20).

The value of t which will make both returns equal, will be;

R1 = R2.

P×1.05^t = P(1+20)

P will cancel out

1.05^t = 21

Log both sides

Log1.05^t = Log21

tLog1.05 = Log21

t = Log21/Log1.05

t = 64 years

The best time to sell the wine is therefore 64years from now.

User Vincent Brodeur
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.