Complete Question
The complete question is shown on the first uploaded image
Answer:
The value of the true strain at the onset of the necking is proved as,
![n = \epsilon_T](https://img.qammunity.org/2021/formulas/physics/college/18fs7o1mwzrqyolzhk0k2sib61cajhtm5u.png)
Step-by-step explanation:
From the question we see that necking begins when
![(d \sigma_T)/(d \epsilon_T) = \sigma_T ---(1)](https://img.qammunity.org/2021/formulas/physics/college/frr11owj6yscuq5hib2r84poq7dxgq8qy7.png)
Now we are told that
![\sigma_T = K \epsilon ^n _T](https://img.qammunity.org/2021/formulas/physics/college/eoy6lmot6z74by75y4mgmuj6uln8a8ptzi.png)
So substituting this into equation 1
![(d)/(d \epsilon_T) (K \epsilon^n_T) = \sigma_T](https://img.qammunity.org/2021/formulas/physics/college/2gms7prokgnmjrqwymw6wbgg517s431ay8.png)
![K n \epsilon^(n-1)_T = \sigma_T](https://img.qammunity.org/2021/formulas/physics/college/wamzftzwnblkw4u6yv6usulvj56pinr9t1.png)
But we are told in the question that
So,
![K n \epsilon^(n-1)_T = K \epsilon ^n _T](https://img.qammunity.org/2021/formulas/physics/college/i1ffrs0mbz1jlzumhnwofba528q49ntezu.png)
Dividing both sides with
![K \epsilon ^n _T](https://img.qammunity.org/2021/formulas/physics/college/4lzxd4i1tpk710ervze63735d1yj8hip61.png)
We have
![(K n \epsilon^(n-1)_T)/( K \epsilon ^n _T) =( K \epsilon ^n _T)/(K \epsilon ^n _T)](https://img.qammunity.org/2021/formulas/physics/college/4s78w67w5eiy0q32rpx5l4ugrhl6by9msx.png)
![n \epsilon_T^(-1) =1](https://img.qammunity.org/2021/formulas/physics/college/6vxs2wb5rzzyvf0bjej0jllk9uob26fyli.png)
![n = \epsilon_T](https://img.qammunity.org/2021/formulas/physics/college/18fs7o1mwzrqyolzhk0k2sib61cajhtm5u.png)