Answer:
a)
, b)
, c)
, d)
, e)
, f)
![v(4.679\,s) = -23.354\,(m)/(s)](https://img.qammunity.org/2021/formulas/mathematics/college/yxz2yp239caqyg3zeqwyonx6x4j9dm4vsb.png)
Explanation:
The velocity function can be derived by the differentiating the height function:
![v = 22.5-9.8\cdot t](https://img.qammunity.org/2021/formulas/mathematics/college/e2ben4dp6tadc8vnkq4slin09uom89e2z1.png)
Velocities after 2 and 4 seconds are, respectively:
a)
![v(2\,s) = 2.9\,(m)/(s)](https://img.qammunity.org/2021/formulas/mathematics/college/yixsgrbnysvtxa9nbay9c2p4ked9giqffp.png)
b)
![v(4\,s) = -16.7\,(m)/(s)](https://img.qammunity.org/2021/formulas/mathematics/college/v3pdt8738y4ww8m5moxoe13n7ncan5zxwm.png)
The maximum height is reached when velocity is zero. Then:
![22.5-9.8\cdot t = 0](https://img.qammunity.org/2021/formulas/mathematics/college/iihtcw40nprp0a9ah09c834pq35hjn0sho.png)
c)
![t = 2.296\,s](https://img.qammunity.org/2021/formulas/mathematics/college/lynmggexfj5jldy8q8uil7qtmjdeqibsvd.png)
The maximum height is:
d)
![h (2.296\,s) = 27.829\,m](https://img.qammunity.org/2021/formulas/mathematics/college/z23up9d33t2aedecmsun20jr8bna7vmrb6.png)
The time required to hit the ground is:
![-4.9\cdot t^(2)+22.5\cdot t +2 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/kdldlxnqgbn33iourxetbd6bl9ygzjnqc7.png)
Roots of the second-order polynomial are:
![t_(1) \approx 4.679\,s](https://img.qammunity.org/2021/formulas/mathematics/college/o4qdrs0bixqhqu47g9s0lgbwpc91gvcvw2.png)
![t_(2) \approx -0.087\,s](https://img.qammunity.org/2021/formulas/mathematics/college/vq8qdjn9h9ku83gq72apt8w4rntlq08bno.png)
Only the first root is physically reasonable.
e)
![t \approx 4.679\,s](https://img.qammunity.org/2021/formulas/mathematics/college/j4fsf4qegqyn34kmnp8t99byaj1yihecl5.png)
The velocity when the projectile hits the ground is:
f)
![v(4.679\,s) = -23.354\,(m)/(s)](https://img.qammunity.org/2021/formulas/mathematics/college/yxz2yp239caqyg3zeqwyonx6x4j9dm4vsb.png)