5. Let
. Note that we want this variable change to be reversible, so we tacitly assume 0 ≤ θ ≤ π/2. Then
![\cos(\theta) = √(1 - \sin^2(\theta)) = √(1 - x^2)](https://img.qammunity.org/2023/formulas/mathematics/college/lskrbp3mpvqivf6as7eifj6us3nse1chzn.png)
and
. So the integral transforms to
![\displaystyle \int (x^3)/(√(1-x^2)) \, dx = \int (\sin^3(\theta))/(\cos(\theta)) \cos(\theta) \, d\theta = \int \sin^3(\theta) \, d\theta](https://img.qammunity.org/2023/formulas/mathematics/college/ywiak50zwle8jxp5r3l6n1vj2ptxt9j4zu.png)
Reduce the power by writing
![\sin^3(\theta) = \sin(\theta) \sin^2(\theta) = \sin(\theta) (1 - \cos^2(\theta))](https://img.qammunity.org/2023/formulas/mathematics/college/28ynboxy1kiu7gdyxh3vgzhwezrae2h386.png)
Now let
, so that
. Then
![\displaystyle \int \sin(\theta) (1-\cos^2(\theta)) \, d\theta = - \int (1-y^2) \, dy = -y + \frac13 y^3 + C](https://img.qammunity.org/2023/formulas/mathematics/college/azcuuohlhai2ru0tr4fshhhpzkr0dny1vo.png)
Replace the variable to get the antiderivative back in terms of x and we have
![\displaystyle \int (x^3)/(√(1-x^2)) \, dx = -\cos(\theta) + \frac13 \cos^3(\theta) + C](https://img.qammunity.org/2023/formulas/mathematics/college/3mrdkhjsvzid0pk9z6nal6kgt3222vo7zc.png)
![\displaystyle \int (x^3)/(√(1-x^2)) \, dx = -√(1-x^2) + \frac13 \left(√(1-x^2)\right)^3 + C](https://img.qammunity.org/2023/formulas/mathematics/college/4lgvx0h8tyhj1fml0ocrtr81scau86ly1q.png)
![\displaystyle \int (x^3)/(√(1-x^2)) \, dx = -\frac13 √(1-x^2) \left(3 - \left(√(1-x^2)\right)^2\right) + C](https://img.qammunity.org/2023/formulas/mathematics/college/far65er1ccod65af5dltnke5z3ksgusiji.png)
![\displaystyle \int (x^3)/(√(1-x^2)) \, dx = \boxed{-\frac13 √(1-x^2) (2+x^2) + C}](https://img.qammunity.org/2023/formulas/mathematics/college/73xa8shvnc921oy4rx96eshfcxyw41chem.png)
6. Let
and
. It follows that
![\cos(\theta) = \frac1{\sec(\theta)} = \frac1{√(1+\tan^2(\theta))} = \frac3{√(9+x^2)}](https://img.qammunity.org/2023/formulas/mathematics/college/3qxmbspp1619xl2k22qzl8i2rk8nw9fnpm.png)
since, like in the previous integral, under this reversible variable change we assume -π/2 < θ < π/2. Over this interval, sec(θ) is positive.
Now,
![\displaystyle \int (x^3)/(√(9+x^2)) \, dx = \int (27\tan^3(\theta))/(√(9+9\tan^2(\theta))) 3\sec^2(\theta) \, d\theta = 27 \int (\tan^3(\theta) \sec^2(\theta))/(√(1+\tan^2(\theta))) \, d\theta](https://img.qammunity.org/2023/formulas/mathematics/college/7uj7yweh6m3mudlaboeelce69pqgbiigx4.png)
The denominator reduces to
![√(1+\tan^2(\theta)) = √(\sec^2(\theta)) = |\sec(\theta)| = \sec(\theta)](https://img.qammunity.org/2023/formulas/mathematics/college/6m66qidzr41h2dyj7tdifczqym3xy993b0.png)
and so
![\displaystyle 27 \int \tan^3(\theta) \sec(\theta) \, d\theta = 27 \int (\sin^3(\theta))/(\cos^4(\theta)) \, d\theta](https://img.qammunity.org/2023/formulas/mathematics/college/3mukq4h7nbnedvoz3jaapuf2vwlmt5vnxq.png)
Rewrite sin³(θ) just like before,
![\displaystyle 27 \int (\sin(\theta) (1-\cos^2(\theta)))/(\cos^4(\theta)) \, d\theta](https://img.qammunity.org/2023/formulas/mathematics/college/a68x4ym3r5qiiy6s6cp0h4pa5yw4nq180z.png)
and substitute
again to get
![\displaystyle -27 \int (1-y^2)/(y^4) \, dy = 27 \int \left(\frac1{y^2} - \frac1{y^4}\right) \, dy = 27 \left(\frac1{3y^3} - \frac1y\right) + C](https://img.qammunity.org/2023/formulas/mathematics/college/7rw7r7nz7mvzbek1c2f1agxdpdr2kfljdq.png)
Put everything back in terms of x :
![\displaystyle \int (x^3)/(√(9+x^2)) \, dx = 9 \left(\frac1{\cos^3(\theta)} - \frac3{\cos(\theta)}\right) + C](https://img.qammunity.org/2023/formulas/mathematics/college/q45k7fpnt03616qd482vvb37jjghvkod3z.png)
![\displaystyle \int (x^3)/(√(9+x^2)) \, dx = 9 \left((\left(√(9+x^2)\right)^3)/(27) - √(9+x^2)\right) + C](https://img.qammunity.org/2023/formulas/mathematics/college/vqlc24tfkkx3q6hjwr9kv9qrxrjxygi87y.png)
![\displaystyle \int (x^3)/(√(9+x^2)) \, dx = \boxed{\frac13 √(9+x^2) (x^2 - 18) + C}](https://img.qammunity.org/2023/formulas/mathematics/college/oi80nf62nclge49zvveu23d1oycvkx89p8.png)
2(b). For some constants a, b, c, and d, we have
![\frac1{x^2+x^4} = \frac1{x^2(1+x^2)} = \boxed{\frac ax + \frac b{x^2} + (cx+d)/(x^2+1)}](https://img.qammunity.org/2023/formulas/mathematics/college/6vgmq7inybgmk41muog8s6d5hcg5c8hdu6.png)
3(a). For some constants a, b, and c,
![(x^2+4)/(x^3-3x^2+2x) = (x^2+4)/(x(x-1)(x-2)) = \boxed{\frac ax + \frac b{x-1} + \frac c{x-2}}](https://img.qammunity.org/2023/formulas/mathematics/college/jnxrvouqyvmfjp9x70ucsxam7n3acgyplg.png)
5(a). For some constants a-f,
![(x^5+1)/((x^2-x)(x^4+2x^2+1)) = (x^5+1)/(x(x-1)(x+1)(x^2+1)^2) \\\\ = (x^4 - x^3 + x^2 - x + 1)/(x(x-1)(x^2+1)^2) = \boxed{\frac ax + \frac b{x-1} + (cx+d)/(x^2+1) + (ex+f)/((x^2+1)^2)}](https://img.qammunity.org/2023/formulas/mathematics/college/yt6aoo409yppi9rkuy3y5dg52l4i7nfdoj.png)
where we use the sum-of-5th-powers identity,
![a^5 + b^5 = (a+b) (a^4-a^3b+a^2b^2-ab^3+b^4)](https://img.qammunity.org/2023/formulas/mathematics/college/qc02p5bdenjnxvpjcwr9u32v47zk8zmb2s.png)