Answer:
The curve produces a slope field with vertical tangents at y = 2.
Explanation:
The differential equation
equals the quotient of the quantity x minus 2 and y minus 2.
Hence,

Now, at y = 2,
becomes ∞ and hence the curve y = f(x) with
will have tangents at y = 0 with slopes equal to ∞ i.e. the tangents make 90° angle with the positive x-axis.
Therefore, the curve produces a slope field with vertical tangents at y = 2. (Answer)