Answer:
lim_(x→0)[tan(x)/(3x+ tan(x))]
= 1/4
Explanation:
lim_(x→0)[tan(x)/(3x+ tan(x))]
Dividing both the numerator and denominator by tan(x), we have the limit to be
= lim_(x→0)[1/(3x/tan(x) + 1)]
= lim_(x→0)[1/(3xcos(x)/sin(x) + 1)]
= lim_(x→0)[sin(x)/(3xcos(x) + sin(x))]
Substituting x = 0, the limit gives an unwanted 0/0. So we apply L'Hopital's rule.
THE RULE STATES THAT
lim_(x→a)[f(x)/g(x)] = lim_(x→a)[f'(x)/g'(x)]
If lim_(x→a)[f(x)/g(x)] = 0/0,
it is reasonable to use
lim_(x→a)[f'(x)/g'(x)]
So
lim_(x→0)[sin(x)/(3xcos(x) + sin(x))]
= lim_(x→0)[cos(x)/(3cos(x) - 3xsin(x) + cos(x))]
= 1/(3 - 0 + 1)
= 1/4