183k views
5 votes
When an automobile is stopped with a roving safety patrol,each tire is checked for tire wear, and each headlight is checkedto see whether it is properly aimed. Let X denote the numberof headlights that need adjustment, and let Y denote the numberof defective tires.

a) if X and Y are independent with Px(0) = .5, Px(1) =.3,Px(2) =.2 and Py(0) =.6, Py(1) =.1, Px(2) =Py(3) =..05, Py(4) =.2,display the joint probability distribution table.
b) compute P(X<= 1 and Y <= 1) fromthe joint probability distribution table and verify that it isequals to the product P(X <= 1) * P(Y<=1)
c) What is P(X+Y = 0) (theprobability of no violations)?
d) Compute P(X + Y <= 1).

1 Answer

5 votes

Answer:

a) Joint ptobability distribution


\begin{pmatrix} &amp;Y=0&amp;Y=1&amp;Y=2&amp;Y=3&amp;Y=4\\X=0&amp;0.3&amp;0.05&amp;0.025&amp;0.025&amp;0.1\\ X=1&amp;0.18&amp;0.03&amp;0.015&amp;0.015&amp;0.06 \\ X=2&amp;0.12&amp;0.02&amp;0.01&amp;0.01&amp;0.04\end{pmatrix}

b) P(X<= 1 and Y <= 1) = P(X<= 1) * P(Y<=1) = 0.56

c) P(X + Y = 0)=0.3

d) P(X + Y <= 1)=0.53

Explanation:

We have to construct the joint probability table with the marginal probabilities of X and Y.

X can take values from 0 to 2, and Y can take values from 0 to 4.

We can calculate each point of the joint probability as:


P(x,y)=P_x(x)*P_y(y)

Then, the joint probabilities are:

X=0 Y=0 Px=0.5 Px=0.6 P(0,0)=0.3

X=0 Y=1 Px=0.5 Px=0.1 P(0,1)=0.05

X=0 Y=2 Px=0.5 Px=0.05 P(0,2)=0.025

X=0 Y=3 Px=0.5 Px=0.05 P(0,3)=0.025

X=0 Y=4 Px=0.5 Px=0.2 P(0,4)=0.1

X=1 Y=0 Px=0.3 Px=0.6 P(1,0)=0.18

X=1 Y=1 Px=0.3 Px=0.1 P(1,1)=0.03

X=1 Y=2 Px=0.3 Px=0.05 P(1,2)=0.015

X=1 Y=3 Px=0.3 Px=0.05 P(1,3)=0.015

X=1 Y=4 Px=0.3 Px=0.2 P(1,4)=0.06

X=2 Y=0 Px=0.2 Px=0.6 P(2,0)=0.12

X=2 Y=1 Px=0.2 Px=0.1 P(2,1)=0.02

X=2 Y=2 Px=0.2 Px=0.05 P(2,2)=0.01

X=2 Y=3 Px=0.2 Px=0.05 P(2,3)=0.01

X=2 Y=4 Px=0.2 Px=0.2 P(2,4)=0.04

We can write it in the form of a matrix:


\begin{pmatrix} &amp;Y=0&amp;Y=1&amp;Y=2&amp;Y=3&amp;Y=4\\X=0&amp;0.3&amp;0.05&amp;0.025&amp;0.025&amp;0.1\\ X=1&amp;0.18&amp;0.03&amp;0.015&amp;0.015&amp;0.06 \\ X=2&amp;0.12&amp;0.02&amp;0.01&amp;0.01&amp;0.04\end{pmatrix}

b) From the joint probability P(X<= 1 and Y <= 1) is equal to


P(X\leq 1 \&amp; Y \leq 1)=P(0,0)+P(0,1)+P(1,0)+P(1,1)\\\\P(X\leq 1 \&amp; Y \leq 1)=0.3+0.05+0.18+0.03=0.56

We can calculate P(X<= 1) * P(Y<=1)


P_x(X\leq 1)=P_x(0)+P_x(1)=0.5+0.3=0.8\\\\P_y(Y\leq1)=P_y(0)+P_y(1)=0.6+0.1=0.7\\\\P_x(X\leq1)*P_y(Y\leq1)=0.8*0.7=0.56

Both calculations give the same result.

c) Probability of no violations


P(X+Y=0)=P(0,0)=0.3

d) P(X + Y <= 1)


P(X+Y \leq 1)=P(0,0)+P(0,1)+P(1,0)\\\\P(X+Y \leq 1)=0.3+0.05+0.18=0.53

User Ahmed ElMetwally
by
3.9k points