94.1k views
16 votes
Find the length of the third side. If necessary, round to the nearest tenth

Find the length of the third side. If necessary, round to the nearest tenth-example-1
User Vagish
by
3.0k points

2 Answers

5 votes


\qquad\qquad\huge\underline{{\sf Answer}}♨

Let's use Pythagoras theorem !


\qquad \sf  \dashrightarrow \:h {}^(2) = p {}^(2) + b {}^(2)

where,

  • h = hypotenuse = unknown

  • b = base = 11

  • p = perpendicular = 12


\qquad \tt\dashrightarrow \:h {}^(2) = 12{}^(2) + 11 {}^(2)


\qquad \tt\dashrightarrow \:h {}^(2) = 144{}^{} + 121


\qquad \tt\dashrightarrow \:h {}^(2) = 265


\qquad \tt\dashrightarrow \:h {}^{} = √(265)


\qquad \tt\dashrightarrow \:h {}^{} \approx16.3

User Oldtechaa
by
3.7k points
10 votes
for this equation we just use pythagorean theorem.

11^2+12^2=x^2
121+144=x^2
265=x^2
x=16.3
User Nikel Weis
by
3.6k points