228k views
2 votes
Guys, help me please! find the inverse function

If f(x) = 2x ÷ 3 and g(x) = 3x + 4, what is g-1[f(x)] if x = 9?

2 Answers

4 votes

Answer:

Explanation:

Answer is 5

User Rafalefighter
by
3.5k points
3 votes

Answer:


g^(-1)[f(9)]=(2)/(3)

Explanation:

To find
g^(-1)(x)

instead of g, we write y


y=3x+4

swap x's and y's


x=3y+4

make y subject of the expression


y=(x-4)/(3)\\\implies g^(-1)(x)=(x-4)/(3)


g^(-1) \[f(x)\]\quad \textnormal{means put}\quad f \quad \textnormal{in to }\quad g^(-1)


\therefore g^(-1)[f(x)]=((2x)/(3)-4)/(3)


=(2x-12)/(9)

if
x=9


g^(-1)[f(9)]=(2(9)-12)/(9)=(18-12)/(9)=(6)/(9)=(2)/(3)

User HumblePilgrim
by
3.5k points