The points are not collinear.
Solution:
Let A, B and C be (3, -10), (-2, -7) and (0, -5).
If slopes of any two points are same, then the points are collinear.
Slope formula:
![$m=(y_2-y1)/(x_2-x_1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/bfyce6w4uh2snt7510uytf8spvrhl5evuj.png)
Slope of AB:
![$m_1=(-7-(-10))/(-2-3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/rijrrbgpjaiupaghefek6zhr4k9y1w6pns.png)
![$m_1=(-7+10)/(-5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/jx1pj4dg2kpm4xjpnewgqw4grrd6e2sx26.png)
![$m_1=-(3)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ttsglu3negi2h4zn28c8f2m9q67vtbtwlk.png)
Slope of BC:
![$m_2=(-5-(-7))/(0-(-2))](https://img.qammunity.org/2021/formulas/mathematics/high-school/vf378bjztjqj546m8fnezjwbjuo1xpnceb.png)
![$m_2=(-5+7)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/jeo9ieig6owfxg735qqda1yslnk3huwbhg.png)
![$m_2=(2)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hl7pk1wpfh5yze2deztefv8k8in9vaak06.png)
![m_2=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/4serii11kndgfsa34nbiephms2rw5ze5eg.png)
Slope of CA:
![$m_3=(-10-(-5))/(3-0)](https://img.qammunity.org/2021/formulas/mathematics/high-school/xhrn4v8i215lcw7qhden8yk41l17zanfi9.png)
![$m_3=(-10+5)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/t0du1wmntla0ti0dtnf3srzjsprw60vc86.png)
![$m_3=-(5)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qs2koo1ngeasfrjlelcpyp5b9spfadqrbj.png)
![m_1\\eq m_2 \\eq m_3](https://img.qammunity.org/2021/formulas/mathematics/high-school/hmt81sy5f97ysyk4629tiul8pbg8h8e1kk.png)
Slope of AB ≠ Slope of BC ≠ Slope of AC
Therefore the points are not collinear.