72.8k views
0 votes
cos2x = Check all that apply. A. 1 - 2 sin^2 x, B. sin^2 x -cos^2 x, C. cos^2 x - sin^2 x, D. 2 sin^2 x -1

User Heath
by
8.3k points

2 Answers

2 votes

Answer:

Explanation:

cos2x = Check all that apply. A. 1 - 2 sin^2 x, B. sin^2 x -cos^2 x, C. cos^2 x - sin-example-1
User Febian Shah
by
8.3k points
4 votes

Answer:

cos(2x) = 1 - 2 sin²(x) ⇒ A

cos(2x) = cos²(x) - sin²(x) ⇒ C

Explanation:

Lets revise the rule of cosine compound angles

cos(x + y) = cos(x) cos(y) - sin(x) sin(y)

cos(x - y) = cos(x) cos(y) + sin(x) sin(y)

Let us use the first rule above

∵ cos(2x) = cos(x + x)

∵ cos(x + x) = cos(x) cos(x) - sin(x) sin(x)

∴ cos(x + x) = cos²(x) - sin²(x)

cos(2x) = cos²(x) - sin²(x) ⇒ (1)

Lets use the rule sin²(x) + cos²(x) = 1

∵ sin²(x) + cos²(x) = 1

- Subtract sin²(x) from both sides

∴ cos²(x) = 1 - sin²(x)

- Substitute cos²(x) by 1 - sin²(x) in (1)

∵ cos(2x) = 1 - sin²(x) - sin²(x)

- Add the like terms in the right hand side

cos(2x) = 1 - 2 sin²(x) ⇒ (2)

∵ sin²(x) + cos²(x) = 1

- Subtract cos²(x) from both sides

∴ sin²(x) = 1 - cos²(x)

- Substitute sin²(x) by 1 - cos²(x) in (1)

∵ cos(2x) = cos²(x) - (1 - cos²(x))

∴ cos(2x) = cos²(x) - 1 + cos²(x)

- Add the like terms in the right hand side

cos(2x) = 2 cos²(x) - 1 ⇒ (3)

User Biplav
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories