Answer:
18.7939 m
Explanation:
-Let x be the distance between John and clock tower.
-Let y be the vertical distance from the eyes of the two men standing to the top of the clock tower.
#Taking the right triangle ACD:
![\Tan \ theta=(Perpendicular \ Height)/(Base)\\\\Tan \ 60\textdegree=(y+1.5)/(x)\\\\y=x \ Tan \ 60\textdegree -1.5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fvxn1riglopv29hifig88ni41qfq52bjcl.png)
#Taking the right triangle ABD:
![\Tan \ theta=(Perpendicular \ Height)/(Base)\\\\Tan \ 40\textdegree=(y+1.5)/(x+20)\\\\y=(x+20)\ Tan \ 40\textdegree -1.5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rn63vcisfq09lvzkpqjky6ghwvpplnunjl.png)
#We equate the two yo solve for x and y;
![(x+20)\ Tan \ 40\textdegree -1.5=x\ Tan \ 60\textdegree -1.5\\\\(x+20)\ Tan \ 40\textdegree=x\ Tan \ 60\textdegree\\\\0.8391x+16.7820=1.7321x\\\\x=18.7939](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5w54ogiz576it56qgep6djrpaorjzvexdh.png)
Hence, John's distance from the tower's base is 18.7939 m