a=4 , b=3 These values make the equation true .
Explanation:
Here we have , If a and b are both integers and b does not equal 0, then -(a/b) = (-a)/b = a/(-b) Choose two values for a and b. We need to find if those values make the equation true . Let's find out:
We have the following equation:
-(a/b) = (-a)/b = a/(-b) , Let a=4 , b=3 , So
⇒
![-(a/b) = (-a)/b = a/(-b)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/e7kyd1ndjr2f6wb1b5wudff6wrkhieycqq.png)
⇒
![-(a)/(b) = (-a)/(b) = (a)/(-b)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8lr6jsgiyrkf9bkkkxcns9hv5g3jrrkyps.png)
⇒
![-(4)/(3) = (-4)/(3) = (4)/(-3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8zrl4055i8p5hosmsfbeciit4hazupmgk8.png)
⇒
{ Multiplying by -1 }
⇒
![(4)/(3) = (4)/(3) = (4)/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/d195btko7b7z0j467h30t1j85qbn1x1lb9.png)
Therefore , These values make the equation true .