angles formed by these tosses are
and
degrees to the nearest hundredth.
Explanation:
Here , We have a triangle with sides of length 8.6 feet, 5.8 feet and 7.5 feet.
The Law of Cosines (also called the Cosine Rule) says:
![c^2 = a^2 + b^2 - 2ab (cosx)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/d20wo3wz2jyuecxydo1lrerrwfx36q6306.png)
Using the Cosine Rule to find the measure of the angle opposite the side of length 8.6 feet:
⇒
![c^2 = a^2 + b^2 - 2ab (cosx)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/d20wo3wz2jyuecxydo1lrerrwfx36q6306.png)
⇒
![c^2 -a^2 - b^2 = -2ab (cosx)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/830n4z9s6s3oubluek2el904q5kqyeez0s.png)
⇒
![(cosx) =( c^2 -a^2 - b^2)/( -2ab)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mc82vsp1cghs4okglh0534unz4x6t7w0dz.png)
⇒
![(cosx) =((8.6^2 - 5.8^2 - 7.5^2))/( ( -2(5.8)7.5))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9c87sp0wh9wxtrzo8islc8tgdqm22hmmoh.png)
⇒
![(cosx) =0.18310](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2sgit02awlokgbxwqhn7r20dwbc26bbco4.png)
⇒
![cos^(-1)(cosx) = cos^(-1)(0.18310)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/x239ebuqffqka3kacyqgj4kv717xl3m9qx.png)
⇒
![x = 79.45](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4upfbjzg7ilz089ylo2mdsk1o9a2rxfw9k.png)
The Law of Sines (or Sine Rule) is very useful for solving triangles:
![(a)/(sin A) = ( b)/(sin B) = (c)/(sin C)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1jpe29p6my33dle5nit9962ynxalxln8hb.png)
We can now find another angle using the sine rule:
⇒
![( 8.6 )/( sin 79.45) = (7.5)/( sin Y)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9svxudmilcxa8k44cho3cndnrabqs129zb.png)
⇒
![sin Y = ((7.5 (sin 79.45)))/( 8.6)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/k6mxaiu5cj777e621w7qog1nt13mpgrsw2.png)
⇒
![Y = 59.02 degrees](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pfr1378tkija0h4brl5r92x61zcxc6bbeh.png)
So, the third angle =
![180 - 79.45 - 59.02 = 41.53 degrees.](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mbuwdlnktcljjhvgtaydby0kuf9ez5fhx5.png)
Therefore, angles formed by these tosses are
and
degrees to the nearest hundredth.