Answer :
⠀
Explanation :
- This is Right Angled Triangle.
⠀
Solution :
We'll solve this using the Pythagorean Theorem.
where,
- AB (20 cm) is the perpendicular
⠀
We know that,
![{\longrightarrow \bf \qquad (AC) {}^(2) = (AB) {}^(2) +( BC) {}^(2) } \\ \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/h1t7qtrzo4h6m3lctomss3222zw9c7ntjo.png)
Now, we will substitute the given values in the formula :
![{\longrightarrow \sf \qquad (AC) {}^(2) = (20) {}^(2) +( 48) {}^(2) } \\ \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/qu5uuy9pvhvhf62u55sxrz2hkdbdxadc83.png)
We know that, (20)² = 400 and (48)² = 2304. So,
![{\longrightarrow \sf \qquad (AC) {}^(2) = 400 + 2304 } \\ \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/63lf8jczveksy57mfkhf7ksygw4i9a7cel.png)
Now, adding 400 and 2304 we get :
![{\longrightarrow \sf \qquad (AC) {}^(2) = 2704 } \\ \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/94s72fe92pbid76odazcvx9gpvul7hp5bm.png)
Now, we'll take the square root of both sides to remove the square from AC :
![{\longrightarrow \sf \qquad \sqrt{ (AC) {}^(2)} = √(2704) } \\ \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/dpyd6kireslzrhoh402yyz39ia6kazfrcj.png)
When we take the square root of (AC)² , it becomes AC,
![{\longrightarrow \sf \qquad AC = √(2704) } \\ \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/35k3fb3obgcyzz89jhrh917ahwn9h88hes.png)
We know that, square root of 2704 is 52 .
![{\longrightarrow \sf{\pmb{ \qquad AC = 52 }}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/wmvbrqcbcnyt4girl5u6ac14ngioiqq7c8.png)
So,
- The measure of the missing side (AC) is 52 cm .