Answer:
See attachment.
Explanation:
We want to graph the rational function;
![y = \frac{2x + 8}{3 {x}^(2) - 9 }](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zpcatoctj62yckv98bfft6ekmhjp22g3a7.png)
The vertical asymptotes occur at where the denominator is zero.
![3 {x}^(2) - 9 = 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tocetuok89xl43w8t88mbfk8oqnu1hwa4a.png)
![{x}^(2) - 3 = 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sgh0a8z2ohpp1mx8kaxefyzfype8g7g0vq.png)
![x = \pm √(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/h14tdnmp4kp2qlm5dablusq2ra9210vxec.png)
![x = - √(3) \: or \: x = √(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2wh0u7nw31w3n579oorsvq9niajilp0rlj.png)
The horizontal asymptote is y=0, since the degree of the numerator is less than the degree of the denominator.
The y-intercept is
![y = \frac{2 * 0 + 8}{3 {(0)}^(2) - 9 } = - (8)/(9)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/q7k7opx7rsl4cl8cfgd1twaegpiki1chqn.png)
The x-intercept is
![0= \frac{2x + 8}{3 {x}^(2) - 9 }](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zehqygfiwqb13ftu0hkee3x3mx45b581jw.png)
![2x + 8 = 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/akqrnhlo1eme2zo7edk4wch4edth7ij70f.png)
![x = - 4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/k0wfbesxnbgyti9paevsa09bi7tij2kfn7.png)
With this information we can graph the function as shown in attachment.