Answer:
The radius is increasing at a rate 0.18 inches per second.
Explanation:
We are given the following in the question:
The volume of cylinder is constant.
![(dV)/(dt) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/oo25knzs6xx0zfxy3o3uvqc0c5gwoiqlzi.png)
![(dh)/(dt) = -0.6\text{ inch per second}](https://img.qammunity.org/2021/formulas/mathematics/college/cjb0hgmywp9x2oi5wefe0y8jn2iyjai6kg.png)
Instant radius= 3 inches
Instant height = 5 inches
Volume of cylinder =
![V = \pi r^2 h](https://img.qammunity.org/2021/formulas/mathematics/college/z7xxtxb662vlntg2gtks7pz39kn1uespms.png)
Rate of change of volume =
![(dV)/(dt) = \pi(2r(dr)/(dt)h + r^2(dh)/(dt))](https://img.qammunity.org/2021/formulas/mathematics/college/aks71z4ijmlbpojnjl8vr6v7b2mzearmeq.png)
Putting all the values, we get,
![0 = (22)/(7)(2(3)(dr)/(dt)(5)+(3)^2(-0.6))\\\\30(dr)/(dt) = 9(0.6)\\\\(dr)/(dt) = (9* 0.6)/(30) = 0.18](https://img.qammunity.org/2021/formulas/mathematics/college/2xpd4dncet231jcjyeolmk6axh00zofpbg.png)
Thus, the radius is increasing at a rate 0.18 inches per second.