1.3k views
0 votes
Suppose that the price p​ (in dollars) and the weekly sales x​ (in thousands of​ units) of a certain commodity satisfy the demand equation 8p cubedplusx squaredequals45 comma 225. Determine the rate at which sales are changing at a time when xequals135​, pequals15​, and the price is falling at the rate of ​$.60 per week.

1 Answer

5 votes

Answer:

The value of rate at which the sales are changing is 12

Explanation:

Given function is,
8p^(3)+x^(2)=45225

To determine the rate at which sales are changing, that is,
(dx)/(dt), differentiate given function with respect to t,


(d)/(dt)\left ( 8p^(3)+x^(2) \right )=(d)/(dt)\left ( 45225 \right )

Applying sum rule of derivative,


(d)/(dt)\left ( 8p^(3) \right )+(d)/(dt)\left ( x^(2) \right )=(d)/(dt)\left ( 45225 \right )

Applying power rule and constant rule of derivative,


8\left ( 3p^(3-1) \right )(dp)/(dt)+\left ( 2x^(2-1) \right )(dx)/(dt)=0


8\left ( 3p^(2) \right )(dp)/(dt)+\left ( 2x^(1) \right )(dx)/(dt)=0


8\left ( 3p^(2) \right )(dp)/(dt)+\left ( 2x \right )(dx)/(dt)=0


24\left ( p^(2) \right )(dp)/(dt)+2\left ( x \right )(dx)/(dt)=0

Substituting the values,
x=135,p=15,(dp)/(dt)= -\:0.60

Since it is given that price is falling, so
(dp)/(dt) is negative.


24\left ( 15^(2) \right )\left ( -\:0.60 \right )+2\left ( 135 \right )(dx)/(dt)=0


24*225*\left ( -\:0.60 \right )+270\:(dx)/(dt)=0


-3240+270\:(dx)/(dt)=0

Adding -3240 from both sides,


270\:(dx)/(dt)=3240

Dividing by 270,


(dx)/(dt)=(3240)/(270)


(dx)/(dt)=12

User Lijo Jacob
by
5.8k points