Answer:
See detailed explanation.
Explanation:
a) Recall that if a function is a pdf, then it must happen that
. Then,
![\int_(-\infty)^(\infty) f(x) dx=\int_(1)^(\infty) (k)/(x^7) dx=\left.(-1)/(6) (k)/(x^6) \right|_1^(\infty) = (1)/(6)((k)/(1^6)-0) = (k)/(6)=1](https://img.qammunity.org/2021/formulas/mathematics/college/9rhq755i975oyo3rl3auru7zyh53tylth9.png)
which gives as k = 6.
b). Recall that
Then, F(x) =0 if
. Then if x>1 we have from the previous point that
![F(x) = (1)/(6)\left.((6)/(t^6))\right|_(1)^x = 1- (1)/(x^6)](https://img.qammunity.org/2021/formulas/mathematics/college/njrrrd13hbhy7jjbbi83kekyocjy67vvg7.png)
c). We want to know
![\text{Pr}(X>2) = 1- \text{Pr}(X\leq 2) = 1- (1-(1)/(2^6)) = 0.016.](https://img.qammunity.org/2021/formulas/mathematics/college/gz55q1sd8nx9x2jh4ozqv1md3zpz695k0p.png)
The case
![\text{Pr}(2\leqX\leq 3) = F(3)-F(2) = 1-(1)/(3^6)-(1-(1)/(2^6)) =0.014](https://img.qammunity.org/2021/formulas/mathematics/college/q101de1dojxmjh22uq80e1bjo0p2jemv86.png)
d). We have that
. Where,
![\text{E}(X^k)=\int_(-\infty)^(\infty)x^kf(x) dx](https://img.qammunity.org/2021/formulas/mathematics/college/8dyia7h6qp52ksaamw4donwvkbw3uj16eh.png)
Then,
![\text{E}(X^k)=6\int_(1)^(\infty)(x^k)/(x^7) dx=6\int_(1)^(\infty)x^(k-7) dx = (6)/(k-6) x^(k-6)](https://img.qammunity.org/2021/formulas/mathematics/college/uc1nj3ggk4c6gyzrbue2od0sltbqhtmza4.png)
If k<6, then
![=(6)/(k-6)(\left.(1)/(x^(6-k)))\right|_1^(\infty) = (6)/(k-6)(0-1) = (6)/(6-k)](https://img.qammunity.org/2021/formulas/mathematics/college/h12q40rsdvhg7em9zh101jgd45ldso05gh.png)
So, the mean (k=1) is 6/(6-1) = 6/5= 1.2 . And the standard deviation is
.
e. We are asked for
Which is equivalent to
![\text{Pr}(-\sigma+\mu \leq X \leq \sigma+\mu ) =\text{Pr}(0.955 \leq X \leq 1.445 ) = F(1.445) - F(0.955) = F(1.445) = 1- (1)/(1.445^6) = 0.89](https://img.qammunity.org/2021/formulas/mathematics/college/6nj2zros8x3o77b7kjary5hl7lypepivfq.png)