Answer:
![P(X \geq0.55) \leq 0.22](https://img.qammunity.org/2021/formulas/mathematics/college/px0bk6wr2mbbpj0xmercz96sehpx8gll1z.png)
Explanation:
Using central Limit Theorem (CLT), The sum of 100 random variables;
is approximately normally distributed with
Y ~ N (100 ×
) = N ( 50,
)
The approximate probability that it will take this child over 55 seconds to complete spinning can be determined as follows;
N ( 50,
)
![P(Y>55) =P(Z>(55-50)/(10/3))](https://img.qammunity.org/2021/formulas/mathematics/college/l674v9kgxosslwfdl37raciy737d8fisx0.png)
![P(Y>55) =P(Z>1.5)](https://img.qammunity.org/2021/formulas/mathematics/college/x7d3bsuss91ymkfhwwy60ws81v48zukrij.png)
![P(Y>55) =\phi (-1.5)](https://img.qammunity.org/2021/formulas/mathematics/college/7gz19o6p7zpzzt8h77hgaqgp1il9u3cj9u.png)
![P(Y>55) =0.0668](https://img.qammunity.org/2021/formulas/mathematics/college/yuab40ulaeay2ofqvpcvwmynxoy28r2to7.png)
Using Chebyshev's inequality:
![P(|X-\mu\geq K)\leq (\sigma^2)/(K^2)](https://img.qammunity.org/2021/formulas/mathematics/college/mmltw5f509h3u91r1rh76j3iz147s7hx0i.png)
Let assume that X has a symmetric distribution:
Then:
![2P(X-\mu\geq K)\leq) (\sigma^2)/(K^2)](https://img.qammunity.org/2021/formulas/mathematics/college/g4enq1niyi7cluqh3qzsmpxsc4axt4lr9o.png)
![2P(X \geq \mu+K)\leq) (\sigma^2)/(K^2)](https://img.qammunity.org/2021/formulas/mathematics/college/hxci5159syc0d4ckxtqpmlg63b6rd77xhc.png)
where: (
)
![P(X \geq0.55) \leq 0.22](https://img.qammunity.org/2021/formulas/mathematics/college/px0bk6wr2mbbpj0xmercz96sehpx8gll1z.png)