2.3k views
1 vote
Find derivative using first principle definition f(x)=(square root of 9-x)+ ( -2x+1/(x+2))

1 Answer

3 votes

Step-by-step explanation:

Here we have the following function:


f(x)=√(9-x)+(-2x+1)/(x+2)

By property:


\left(f\pm g\right)'=f\:'\pm g'

Then:


(df)/(dx)=(d)/(dx)\left(√(9-x)\right)+(d)/(dx)\left((1-2x)/(x+2)\right)

From here:


(d)/(dx)\left(√(9-x)\right)=-(1)/(2√(9-x))

And:


(d)/(dx)\left((1-2x)/(x+2)\right)=((d)/(dx)[\left(1-2x\right)]\left(x+2\right)-(d)/(dx)[\left(x+2\right)]\left(1-2x\right))/(\left(x+2\right)^2) \\ \\ =(\left(-2\right)\left(x+2\right)-1\cdot \left(1-2x\right))/(\left(x+2\right)^2)= -(5)/(\left(x+2\right)^2)

Therefore:


\boxed{(df)/(dx)=-(1)/(2√(9-x))-(5)/(\left(x+2\right)^2)}

User Susaj S N
by
3.8k points