Answer:
When pH = 9.50 ; Volume = 14.8 L
When pH = 4.70 ; Volume = 4.51 L
Step-by-step explanation:
We all know that:
![pKa = -logKa](https://img.qammunity.org/2021/formulas/chemistry/college/m0kheebvllvvl385uby526ecrppbo48fwr.png)
So let us first calculate the pKa values of the following Ka:
Given that:
Ka1 = 1.0×10⁻³
Ka2 = 5.0×10⁻⁸
Ka3 = 2.0×10⁻¹²
For
; we have
![-logKa_1](https://img.qammunity.org/2021/formulas/chemistry/college/jwes90fwnv5zeme1pfkj8f2n3ozoxy6gxr.png)
=
![-log(1.0*10^(-3))](https://img.qammunity.org/2021/formulas/chemistry/college/4rj50bptkxydkqbyom4l6suwyscp072r5y.png)
= 3.00
![pKa_2 = -logKa_2](https://img.qammunity.org/2021/formulas/chemistry/college/p9kvx7o5gbfqhn3eb9kqfdcl6r87z9eikd.png)
=
![-log(5.0*10^(-3))](https://img.qammunity.org/2021/formulas/chemistry/college/yst9w1kf5bx3l36pn7l09e9bj1lc77e32q.png)
= 7.30
![pKa_3 = -logKa_3](https://img.qammunity.org/2021/formulas/chemistry/college/4hfavp4n5i0jgzmbj2dqhq64h3sh209usv.png)
=
![-log(2.0*10^(-12))](https://img.qammunity.org/2021/formulas/chemistry/college/2r389zc58djnookh5arbdu39oltkxo6k8h.png)
= 11.70
At pH = 4.70:
The pH (4.70) is closer to
than
and
.
However, the only important pKa for the dissociation of the acid will be directed towards only
![pKa_1](https://img.qammunity.org/2021/formulas/chemistry/college/cpko3qib0ulhe398b0ofzpuvr4gw183bri.png)
So: At pH = 4.70
-log
= pH = 4.70
![[H_3O^+] = 10^(-4.70)](https://img.qammunity.org/2021/formulas/chemistry/college/jbiah7dvhp7kjutz3lqobeppd2q88amowg.png)
⇄
![H_3O^+_((aq))](https://img.qammunity.org/2021/formulas/chemistry/college/tsmj52dzeh2x7cud61gis73s9n8b037kj3.png)
![Ka_1= ([H_2A^-][H_3O^+])/([H_3A])](https://img.qammunity.org/2021/formulas/chemistry/college/7e49lglcm1dcxct4kcp818m2u7n2wisnwd.png)
![1.0*10^(-3)= ([H_2A^-][H_3O^+])/([H_3A])](https://img.qammunity.org/2021/formulas/chemistry/college/tu5oplm8icr7ttd8qvpnzlyf431i6drr19.png)
![(1.0*10^(-3))/([H_3O^+])= ([H_2A^-])/([H_3A])](https://img.qammunity.org/2021/formulas/chemistry/college/7rqdxtnquah2gy04t7xaoo5t5nbmed99d8.png)
where;
![[H_3O^+] = 10^(-4.70)](https://img.qammunity.org/2021/formulas/chemistry/college/jbiah7dvhp7kjutz3lqobeppd2q88amowg.png)
so, we have:
![(1.0*10^(-3))/([10^(-4.70)])= ([H_2A^-])/([H_3A])](https://img.qammunity.org/2021/formulas/chemistry/college/16g8j19rf6vq599vo78vuuq1xjnn0lnqqx.png)
![([H_2A^-])/([H_3A])= 10^(1.7)](https://img.qammunity.org/2021/formulas/chemistry/college/awzlsh3395wj2pc3b0j53klpg1e4rkgbh9.png)
![([H_2A^-])/([H_3A])= 50.12](https://img.qammunity.org/2021/formulas/chemistry/college/dc24gvk1adajea6ih5hhk9ktb4ni635e1s.png)
Given that;
283.0 mL of
solution is given:
Then ; 283.0 mL = 0.283 L
However;
=
![*5.60*10^(-2)M](https://img.qammunity.org/2021/formulas/chemistry/college/3uw3bcxteni0mkecvqid2y3kigpg2c569a.png)
= 0.013328
=
![1.3328*10^(-2) M](https://img.qammunity.org/2021/formulas/chemistry/college/jf30wquugc1mkxs7iiw8j67jygn6g4qc7m.png)
![n_(H_2A^-)+ (n_(H_2A^-))/(50.12) = 1.3328*10^(-2)](https://img.qammunity.org/2021/formulas/chemistry/college/ttibse33f5ncjn8qwv3p81jl1sft6ngvwk.png)
![n_(H_2A^-)= (1.3328*10^(-2))/((1+(1)/(50.12) ))](https://img.qammunity.org/2021/formulas/chemistry/college/mqbhnm802dl7ei79d596i7w35na7okn2i1.png)
= 0.01307 mole
moles of NaOH required to convert
to
i.e
=
![1.307*10^(-2)moles](https://img.qammunity.org/2021/formulas/chemistry/college/t1u5wju3k2alt1c9zf2zjnnlxeefv0ekt0.png)
Finally; the volume of NaOH required =
![(1.307*10^(-2))/(2.90)](https://img.qammunity.org/2021/formulas/chemistry/college/9nui5wn4ncvkkwpwi1hid5uxkxjwmc7k8k.png)
= 0.004507
= 4.51 mL
When pH = 4.70 ; Volume = 4.51 L
When pH = 9.50
We try to understand that the average of
and
yields 9.50
i.e
![(7.30+11.70)/(2)](https://img.qammunity.org/2021/formulas/chemistry/college/ao0sew0rmkftfzk8a89bj0561qc365seey.png)
=
![(19)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/29dxj2ov27y4u9cse2zlnqm1bx4xw5msya.png)
= 9.50
Here; virtually all,
is in
form;
SO; the moles of NaOH required to convert
to
will be:
= 2 × initial
= volume of NaOH × 1.8 M
= 2 × 1.3328 × 10⁻² mol = Volume of NaOH × 1.8 M
Volume of NaOH =
![(2*1.3328*10^(-2))/(1.8)](https://img.qammunity.org/2021/formulas/chemistry/college/pdcjt0tkw5oylh8m4ko3dx5ffpixnxyx4h.png)
= 0.1481 L
= 14.8 L
When pH = 9.50 ; Volume = 14.8 L