Answer:
Therefore,
![P(x,y)=(2,10)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4k8hib5ufc4vu2adjlfyid6cth9jzk0w8e.png)
Explanation:
Given:
Let Point P ( x , y ) divides Segment AB in the ratio 3 : 1 = m : n (say)
point A( x₁ , y₁) ≡ ( -7 , 4)
point B( x₂ , y₂) ≡ (5 , 12)
To Find:
point P( x , y) ≡ ?
Solution:
IF a Point P divides Segment AB internally in the ratio m : n, then the Coordinates of Point P is given by Section Formula as
![x=((mx_(2) +nx_(1)) )/((m+n))\\ \\and\\\\y=((my_(2) +ny_(1)) )/((m+n))\\\\](https://img.qammunity.org/2021/formulas/mathematics/middle-school/734lbg2dktyql5fh7gq383dtqhi6nvb2xv.png)
Substituting the values we get
![x=((3* 5 +1* -7) )/((3+1)) \ \ \ and\ \ \ y=((3* 12 +1* 4) )/((3+1))\\\\\\\therefore x = (8)/(4)=2 \ \ and\ \ \therefore y = (40)/(4)=10\\\\\\\therefore P(x,y) = (2 , 10)](https://img.qammunity.org/2021/formulas/mathematics/high-school/tfnzdjen40gacsp5su439h0wuma1v3h0g3.png)
Therefore,
![P(x,y)=(2,10)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4k8hib5ufc4vu2adjlfyid6cth9jzk0w8e.png)