Answer:
![\displaystyle t=(\pi)/(3),\ t=(5\pi)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/a5e18qhbbs10k7104r4466o0w97w9tviiv.png)
Explanation:
Trigonometric Equations
The given equation is
![2tan^2t=3sect](https://img.qammunity.org/2021/formulas/mathematics/college/8fvysf90bigcfc34vmuqp9p3lzyzi2wzus.png)
To solve the equation we must recall that
![tan^2t=sec^2t-1](https://img.qammunity.org/2021/formulas/mathematics/college/7jy2n3p24aoxnsefsm4jirhluwspf6gsy7.png)
Substituting into the given equation
![2(sec^2t-1)=3sect](https://img.qammunity.org/2021/formulas/mathematics/college/4pla3tr9gjto34ny1558mft2b8mq2l7y35.png)
Operating and rearranging
![2sec^2t-3sect-2=0](https://img.qammunity.org/2021/formulas/mathematics/college/44kshane355tc9b2db66jnqthnlr7b60bp.png)
This is a second-degree equation in terms of sect. Factoring
![(sect-2)(2sect+1)=0](https://img.qammunity.org/2021/formulas/mathematics/college/st4dafe2o530il26ndguwlheycjzh09ftr.png)
This produces two solutions
![\displaystyle sect=2,\ sect=-(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/5ahae1s1a8p02t1nsir0q1tt41rf1qxe1k.png)
Recalling
![\displaystyle cost=(1)/(sect)](https://img.qammunity.org/2021/formulas/mathematics/college/ka24cypjnr7imhiff0q7t6xs0ds2yisnyg.png)
The solutions are also expressed as
![\displaystyle cost=(1)/(2),\ cost=-2](https://img.qammunity.org/2021/formulas/mathematics/college/x27wc4ryci6ec68pk4fpf22tny3rcr8k73.png)
since the magnitude of the cosine cannot be greater than 1, the only acceptable solution is
\displaystyle cost=\frac{1}{2}
Which has two possible angles in the interval [0,2\pi]
![\boxed{\displaystyle t=(\pi)/(3),\ t=(5\pi)/(3)}](https://img.qammunity.org/2021/formulas/mathematics/college/y8ey41h5qts3fhul3d8snpr3ssbz32a1bp.png)