168k views
3 votes
The indicated function y1(x) is a solution of the given equation. Use reduction of order or this formula, y2 = y1(x) e−∫P(x) dx y12(x) dx , as instructed, to find a second solution y2(x). y'' − 4y' + 4y = 0; y1 = e2x y2 =

User Hectorpal
by
3.3k points

1 Answer

2 votes

Answer:


y_2=xe^(2x)

Explanation:

We have the differential equation y'' − 4y' + 4y = 0,

so we get that is p(x)=-4.

We use the formula:


y_2=y_1(x)\int (e^(-\int p(x)\, dx))/(y^2_1(x))\, dx

We have that:


y_1=e^(2x)

we calculate:


y_2=y_1(x)\int (e^(-\int p(x)\, dx))/(y^2_1(x))\, dx\\\\y_2=e^(2x)\int (e^(4\int 1\, dx))/((e^(2x))^2)\, dx\\\\y_2=e^(2x)\int (e^(4x))/(e^(4x))\, dx\\\\y_2=e^(2x)\int 1\, dx\\\\y_2=xe^(2x)

So, we get that


y_2=xe^(2x)

User Gary Kephart
by
3.9k points