528,998 views
34 votes
34 votes
Write each expression as a single power of 10.

Write each expression as a single power of 10.-example-1
User Aljoscha
by
2.5k points

1 Answer

11 votes
11 votes

Answer:

Refer to below!

Step-by-step explanation (a):


\rightarrow (10^(3) * 10^(4) )/(10^(5) ) \\\\\\ \rightarrow (10^(3 + 4) )/(10^(5) ) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[[\text{Using exponent rule:} \ a^(2) * a^(4) = a^(4 + 2) = a^(6) ] \\\\\\ \rightarrow (10^(7) )/(10^(5) ) \\\\\\


\rightarrow 10^(7 - 5) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [\small\text{Using exponent rule:} \ a^(2) / a^(4) = a^(2 - 4) = a^(-2)] \\\\\rightarrow 10^(2)

Step-by-step explanation (b):


\rightarrow \huge{\text{(}{10^(4) * (10^(12) )/(10^(7) )\huge{\text{)}


\rightarrow \huge{\text{(}{10^(4) * {10^(12 - 7) }\huge{\text{)} \ \ \ \ \ \ \ \ \ \ \ \ [\small\text{Using exponent rule:} \ a^(2) / a^(4) = a^(2 - 4) = a^(-2)]


\rightarrow \huge{\text{(}{10^(4) * {10^(5) }\huge{\text{)}


\rightarrow \huge{\text{(}{10^(4 + 5) }\huge{\text{)}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [\small\text{Using exponent rule:} \ a^(2) * a^(4) = a^(4 + 2) = a^(6) ]


\rightarrow{10^(9) }

Step-by-step explanation (c):


\rightarrow \huge{\text{(}(10^(5) )/(10^(3) ) }\huge{\text{)}


\rightarrow \huge{\text{(}10^(5 - 3) }\huge{\text{)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [\small\text{Using exponent rule:} \ a^(2) / a^(4) = a^(2 - 4) = a^(-2)]


\rightarrow 10^(2) }

Step-by-step explanation (d):


\rightarrow (10^(4) * 10^(5) * 10^(6) )/(10^(3) * 10^(7) )


\rightarrow (10^(4 + 5 + 6) )/(10^(3 + 7) ) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [\small\text{Using exponent rule:} \ a^(2) * a^(4) = a^(4 + 2) = a^(6) ]


\rightarrow (10^(15) )/(10^(10) )


\rightarrow 10^(15 - 10) } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [\small\text{Using exponent rule:} \ a^(2) / a^(4) = a^(2 - 4) = a^(-2)]


\rightarrow 10^(5) }

Step-by-step explanation (e):


\rightarrow ((10^(5))^(2) )/((10^(2))^(3) )


\rightarrow (10^(5 * 2) )/(10^(2 * 3) ) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [\text{Using exponent rule: }(a^(2) )^(5) = a^(2 * 5) = a^(10) ]


\rightarrow (10^(10) )/(10^(6) )


\rightarrow {10^(10 - 6) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [\text{Using exponent rule:} \ a^(2) / a^(4) = a^(2 - 4) = a^(-2)]


\rightarrow {10^(4)

User Andres Suarez
by
2.7k points