x = 85 degrees and
y = 45 degrees.
Explanation:
Step 1:
The angle for a straight line is 180°. The sum of the angles in a triangle is 180°. These two statements are required to solve this problem.
The angles of x° and 95° are on a single straight line.
So
![x^(\circ) + 95^(\circ) = 180^(\circ).](https://img.qammunity.org/2021/formulas/mathematics/middle-school/r59tif8cb5bjw7eozwu845rvpxcz72k5th.png)
![x^(\circ) = 180^(\circ) - 95^(\circ) = 85^(\circ) .](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6dnra04v8u8qv6nyuv8sz4lgem3ut9nqo9.png)
So the angle of x is 85°.
Step 2:
The sum of the angles in a triangle is 180°.
So
![50^(\circ) + x^(\circ) + y^(\circ) =180^(\circ).](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hr84d4zjb4w98odfc8bpo10u23hxuy98rj.png)
![50^(\circ) + 85^(\circ) + y^(\circ) =180^(\circ).](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bb6aeg6aabmyrm25ey2o76h4a66afg6zvh.png)
![y^(\circ) =180^(\circ) - 135^(\circ), y = 45 ^(\circ).](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8loa3k7eynblp2m9l1yx9jakhvvibqxb2j.png)
So the angle of y is 45°.