Answer:
Therefore,
Explanation:
Given:
KP is the angle bisector of ∠ JKL,
∠JKL = 2y + 25
∠ PKL = 8y - 17
To Find:
∠ JKL = ?
Solution:
KP is the angle bisector of ∠ JKL, .. given
Angle bisector divides the angle in two equal parts such that,
![\angle JKL=2* \angle PKL](https://img.qammunity.org/2021/formulas/mathematics/middle-school/976ovi4szsnfp12mdycqhaafzky40tpn9f.png)
Substituting the values we get
![2y+25=2(8y-17)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/aomkbn752c14bb4nt09upd02xd1vmjsfkt.png)
Apply Distributive Property we get
![2y+25=2* 8y-2* 17=16y-34\\\\16y-2y=34+25=59\\\\14y=59\\\\y=(59)/(14)=4.54](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ko3gfgnx0lalky9bbbor0thiksak8j6keg.png)
Now substitute y in JKL
![\angle JKL=2 * 4.54+25=34.08\°](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tjuiljiqdcpakh1vdfilamb5jvjw05f51q.png)
Therefore,
![\angle JKL=34.08\°](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mic5921htxw12308hi943wc44i44im403p.png)