84.8k views
4 votes
Let x be the number of digits in begin math size 16px style 2 to the power of 2001 end style when calculated. Let y be the number of digits in begin math size 16px style 5 to the power of 2001 end style when calculated. Find the sum of x and y

1 Answer

5 votes

Answer:

2002

Explanation:

The number of digits in a number is the ceil value of the base-ten logarithm of the number (ceil value means rounding up).


\text{Number of digits in }N=\left \lceil{\log N}\right \rceil

When
N = 2^(2001)


x=\left \lceil{\log 2^(2001)}\right \rceil=\left \lceil{2001\log2} \right \rceil= 603

When
N = 5^(2001)


y=\left \lceil{\log 5^(2001)}\right \rceil=\left \lceil{2001\log5} \right \rceil= 1399


x+y=603+1399 = 2002

Note that the sum x + y could be derived by finding the number of digits in
2^(2001)*5^(2001)=10^(2001)

The number of zeros in
10^(2001) is 2001. Including the 1 in leftmost digit position gives 2001 + 1 = 2002

User Rheinprinz
by
4.4k points