219k views
2 votes
Find the average value of the function g(x) = lnx/x over the interval [1, e].

User Omurbek
by
3.7k points

1 Answer

3 votes

Answer:


\displaystyle \bar g=(1)/(2(e-1))

Explanation:

Average Value of a Function

Given a function g(x), the average value of g in a given interval (xo,x1) is given by


\displaystyle \bar g=(1)/(x_1-x_0)\int_(x_0)^(x_1) g(x)dx

Plugging in the given data


\displaystyle \bar g=(1)/(e-1)\int_(1)^(e) (lnx)/(x)dx

Let's compute the indefinite integral


\displaystyle I=\int (lnx)/(x)dx

We'll use the substitution u=lnx, du=dx/x. Then


\displaystyle I=\int u.du


\displaystyle I=(u^2)/(2)

Taking back the substitution


\displaystyle I=(ln^2x)/(2)

The average value is


\displaystyle \bar g=(1)/(e-1)(ln^2x)/(2) \ | _1^e


\displaystyle \bar g=(1)/(e-1)\left((ln^2e)/(2)-(ln^21)/(2) \right )


\displaystyle \bar g=(1)/(e-1)\left((1)/(2)-0 \right )


\displaystyle \bar g=(1)/(2(e-1))

User Shaun Wild
by
4.0k points