72.9k views
21 votes
What is the perimeter of this quadrilateral?
(5,5)
(2, 4)
(4, 1)
(6, 1)

What is the perimeter of this quadrilateral? (5,5) (2, 4) (4, 1) (6, 1)-example-1

1 Answer

13 votes


~\hfill \stackrel{\textit{\large distance between 2 points}}{d = √(( x_2- x_1)^2 + ( y_2- y_1)^2)}~\hfill~ \\\\[-0.35em] ~\dotfill\\\\ A(\stackrel{x_1}{5}~,~\stackrel{y_1}{5})\qquad B(\stackrel{x_2}{2}~,~\stackrel{y_2}{4}) ~\hfill AB=√([ 2- 5]^2 + [ 4- 5]^2) \\\\\\ AB=√((-3)^2+(-1)^2)\implies \boxed{AB=√(10)} \\\\[-0.35em] ~\dotfill\\\\ B(\stackrel{x_1}{2}~,~\stackrel{y_1}{4})\qquad C(\stackrel{x_2}{4}~,~\stackrel{y_2}{1}) ~\hfill BC=√([ 4- 2]^2 + [ 1- 4]^2)


BC=√(2^2+(-3)^2)\implies \boxed{BC=√(13)} \\\\[-0.35em] ~\dotfill\\\\ C(\stackrel{x_1}{4}~,~\stackrel{y_1}{1})\qquad D(\stackrel{x_2}{6}~,~\stackrel{y_2}{1}) ~\hfill CD=√([ 6- 4]^2 + [ 1- 1]^2) \\\\\\ CD=√(2^2+0^2)\implies \boxed{CD=2} \\\\[-0.35em] ~\dotfill\\\\ D(\stackrel{x_1}{6}~,~\stackrel{y_1}{1})\qquad A(\stackrel{x_2}{5}~,~\stackrel{y_2}{5}) ~\hfill DA=√([ 5- 6]^2 + [ 5- 1]^2)


DA=√((-1)^2+4^2)\implies \boxed{DA=√(17)} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{\Large Perimeter}}{√(10)~~ + ~~√(13)~~ + ~~2~~ + ~~√(17)}~~ \approx ~~ 12.89

User Pasang
by
5.3k points