Final answer:
Jon's speed on the way home was 12 mph and on the way there was 32 mph.
Step-by-step explanation:
To find the two rates, let's set up a system of equations. Let's assume Jon's speed on his way home was x miles per hour.
According to the problem, his speed on the way there was 20 miles per hour faster, so his speed on the way there was x + 20 mph.
We know that the total time spent driving was 20 hours. Using the formula distance = rate * time, we can set up the following equations:
x * t = 480
(x + 20) * t = 480
Where t is the time spent driving on each trip. Now we can solve the system of equations:
x * t = 480
x * 20 = 480 - 20x (from substituting the first equation into the second)
x * 20 = 480 - 20x
20x + x * 20 = 480
40x = 480
x = 12
So Jon's speed on the way home was 12 mph and on the way there was 12 + 20 = 32 mph.