162k views
4 votes
Determine the zeros of the function y= 2x² + 12x + 22

1 Answer

6 votes

zeros of the function y=
2x^2 + 12x + 22 is
x = -3+( √(8)i )/(2) &
x = -3-( √(8)i )/(2).

Explanation:

Here we have , y=
2x^2 + 12x + 22 in order to find zeros of this quadratic function we get:
2x^2 + 12x + 22 = 0


2x^2 + 12x + 22 = 0


x^2 + 6x + 11 = 0


x = (-b \pm √(b^2-4a(c)) )/(2a)


x = (-(6) \pm √(6^2-4(1)(11)) )/(2(1))


x = (-6 \pm √(36-44)) )/(2)


x = (-6 \pm √(8)i )/(2)


x = -3 \pm ( √(8)i )/(2)

Since, we have two root one with positive & other with negative sign so :


x = -3-( √(8)i )/(2)

Therefore, zeros of the function y=
2x^2 + 12x + 22 is
x = -3+( √(8)i )/(2) &
x = -3-( √(8)i )/(2).

User Martin Milan
by
6.9k points