3.6k views
0 votes
What is the 10th term 1,
1/2,1/4

1 Answer

2 votes

Answer:

The 10th term will be:


a_(10)=(1)/(512)

Explanation:

Considering the sequence


1,\:(1)/(2),\:(1)/(4)...

A geometric sequence has a constant ratio r and is defined by


a_n=a_0\cdot r^(n-1)


\mathrm{Compute\:the\:ratios\:of\:all\:the\:adjacent\:terms}:\quad \:r=(a_(n+1))/(a_n)


((1)/(2))/(1)=(1)/(2),\:\quad ((1)/(4))/((1)/(2))=(1)/(2)


\mathrm{The\:ratio\:of\:all\:the\:adjacent\:terms\:is\:the\:same\:and\:equal\:to}


r=(1)/(2)


\mathrm{The\:first\:element\:of\:the\:sequence\:is}


a_1=1


\mathrm{Therefore,\:the\:}n\mathrm{th\:term\:is\:computed\:by}\:


a_n=\left((1)/(2)\right)^(n-1)

Putting n = 10 to determine in the nth term to determine the 10th term


a_(10)=\left((1)/(2)\right)^(10-1)


a_(10)=\left((1)/(2)\right)^9


\mathrm{Apply\:exponent\:rule}:\quad \left((a)/(b)\right)^c=(a^c)/(b^c)


a_(10)=(1^9)/(2^9)


a_(10)=(1)/(2^9)
1^9=1


a_(10)=(1)/(512)
2^9=512

Therefore, the 10th term will be:


a_(10)=(1)/(512)

User Peter Kaufman
by
5.3k points