Answer:
Part 1)
![4m^{(1)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ix19icla9rohxo1mxv268xkvddx7ahf3t2.png)
Part 2)
![3(r)^{(1)/(3)}(s)^{(2)/(3)}(t)^{(4)/(3)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gda34z82ebd2u88a8h1e7qkqch8qfp4iqv.png)
Part 3)
![3(x)^{(9)/(4)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tzehbny6vyz9lyy61nyhscdkxhu0lc02z7.png)
Explanation:
Part 1) Write each expression without the radical.
we have
![√(16m)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/li0znbqlto41byrdhobgk4598en04qhb72.png)
we know that
![16=4^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dmram7k0wbrcplk03hityatiuopgzfseod.png)
substitute
![√(4^2m)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nmkr5ldcca7v9gl4qjw3surs77z2e9r7ov.png)
Remember that
![\sqrt[a]{x^b}=x^{(b)/(a)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yf05zcldd8vt44x7ttyi9c1kx59iwa8tq8.png)
![(x^a)^(b)=x^(ab)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/d2b0kqf230dkmpzswe6y0r64rj14k524sh.png)
so
![√(4^2m)=(4^2m)^{(1)/(2)}=(4^2)^{(1)/(2)}(m)^{(1)/(2)}=4m^{(1)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5rt5canyyrj84829ntkkstrym78qhyfad5.png)
Part 2) Write each expression without the radical.
we have
![\sqrt[3]{27rs^2t^4}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ft20thx40s67gmvvyazo9qxdhi4q501g2p.png)
we know that
![27=3^3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9txq3aioou3x9s3uodg6qovh99dw9hr9p6.png)
substitute
![\sqrt[3]{3^3rs^2t^4}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/owq7y6f0ke7x2rs8yujbtpp9imcm7hx2zh.png)
Remember that
![\sqrt[a]{x^b}=x^{(b)/(a)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yf05zcldd8vt44x7ttyi9c1kx59iwa8tq8.png)
![(x^a)^(b)=x^(ab)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/d2b0kqf230dkmpzswe6y0r64rj14k524sh.png)
so
![\sqrt[3]{3^3rs^2t^4}=(3^3rs^2t^4)^{(1)/(3)}=(3^3)^{(1)/(3)}(r)^{(1)/(3)}(s^2)^{(1)/(3)}(t^4)^{(1)/(3)}=3(r)^{(1)/(3)}(s)^{(2)/(3)}(t)^{(4)/(3)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jvjfrk1cihuk8bg2sepjg1vedph80yrljw.png)
Part 3) Write each expression without the radical.
we have
![\sqrt[4]{81x^9}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kbx3w9q7e2gf9q8co18buc9umh3bx7uabw.png)
we know that
![81=3^4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/931n2xzsmz1ap1ixikfv4vys0tpqns1d66.png)
substitute
![\sqrt[4]{3^4x^9}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jjoqqf3ea9gx5nlfdgt81lppw6h5qs2k9h.png)
Remember that
![\sqrt[a]{x^b}=x^{(b)/(a)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yf05zcldd8vt44x7ttyi9c1kx59iwa8tq8.png)
![(x^a)^(b)=x^(ab)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/d2b0kqf230dkmpzswe6y0r64rj14k524sh.png)
so
![\sqrt[4]{3^4x^9}=(3^4x^9)^{(1)/(4)}=(3^4)^{(1)/(4)}(x^9)^{(1)/(4)}=3(x)^{(9)/(4)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/k9s66e2j21acw6r84s4vyto2n5cn18nrxi.png)