The simplified expression is
![15 x^(6)+20 x^(5)+10 x^(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zkdh5p5u1rjuof9ur9rkglfwwdmto54euk.png)
Step-by-step explanation:
Given that the expression is
![-5 x^(4)\left(-3 x^(2)-4 x-2\right)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pysspime96ocsa39edllm4n6eof5c8x3ts.png)
We need to determine the simplify the expression.
Let us multiply each term within the parenthesis by the term
![-5 x^(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/lxswdbjwlsol1ao11inmfwbg4yk4emkjzy.png)
Thus, we have,
![\left(-5 x^(4)\right)\left(-3 x^(2)\right)+\left(-5 x^(4)\right)(-4 x)+\left(-5 x^(4)\right)(-2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/k56mjzhume4jk594n2527slf6ujegg82ml.png)
Applying the rule,
in the above expression, we get,
![\left(5 x^(4)\right)\left(3 x^(2)\right)+\left(5 x^(4)\right)(4 x)+\left(5 x^(4)\right)(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ne0uj26ih7wib89ktm77q5j639motnqdvy.png)
Let us simplify by multiplying the terms.
Thus, we get,
![15 x^(6)+20 x^(5)+10 x^(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zkdh5p5u1rjuof9ur9rkglfwwdmto54euk.png)
Hence, the simplified expression is
![15 x^(6)+20 x^(5)+10 x^(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zkdh5p5u1rjuof9ur9rkglfwwdmto54euk.png)