87.9k views
4 votes
In a recent survey, 10 percent of the participants rated Pepsi as being "concerned with my health." PepsiCo's response included a new "Smart Spot" symbol on its products that meet certain nutrition criteria, to help consumers who seek more healthful eating options. At α = .05, would a follow-up survey showing that 18 of 100 persons now rate Pepsi as being "concerned with my health" prove that the percentage has increased?

1 Answer

2 votes

Answer:


z=\frac{0.18 -0.1}{\sqrt{(0.1(1-0.1))/(100)}}=2.67


p_v =P(z>2.67)=0.0038

So the p value obtained was a very low value and using the significance level given
\alpha=0.05 we have
p_v<\alpha so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 5% of significance the proportion of adults who rate Pepsi as being "concerned with my health" i significantly higher than 0.1

Explanation:

Data given and notation

n=100 represent the random sample taken

X=18 represent the adults who rate Pepsi as being "concerned with my health"


\hat p=(18)/(100)=0.18 estimated proportion of adults who rate Pepsi as being "concerned with my health"


p_o=0.10 is the value that we want to test


\alpha=0.05 represent the significance level

z would represent the statistic (variable of interest)


p_v represent the p value (variable of interest)

Concepts and formulas to use

We need to conduct a hypothesis in order to test the claim that the true proportion is higher than 0.1.:

Null hypothesis:
p \leq 0.1

Alternative hypothesis:
p > 0.1

When we conduct a proportion test we need to use the z statistic, and the is given by:


z=\frac{\hat p -p_o}{\sqrt{(p_o (1-p_o))/(n)}} (1)

The One-Sample Proportion Test is used to assess whether a population proportion
\hat p is significantly different from a hypothesized value
p_o.

Calculate the statistic

Since we have all the info requires we can replace in formula (1) like this:


z=\frac{0.18 -0.1}{\sqrt{(0.1(1-0.1))/(100)}}=2.67

Statistical decision

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.

The next step would be calculate the p value for this test.

Since is a right tailed test the p value would be:


p_v =P(z>2.67)=0.0038

So the p value obtained was a very low value and using the significance level given
\alpha=0.05 we have
p_v<\alpha so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 5% of significance the proportion of adults who rate Pepsi as being "concerned with my health" i significantly higher than 0.1

User Tirza
by
4.0k points