Answer:
The distribution of the time it takes to manufacture the products can be explained by the continuous Uniform distribution.
Explanation:
An Uniform distribution is the probability distribution of outcomes that are equally likely, i.e. all the outcomes has the same probability of occurrence.
Uniform distribution are discrete and continuous.
A discrete uniform distribution describes the probability distribution of discrete random variable that assumes discrete values. For example, roll of a die.
A continuous uniform distribution describes probability distribution of continuous random variable that assumes values in a specified interval. For example, time it takes to reach school from home.
In this case let the random variable X be defined as the time it takes to manufacture a product.
To manufacture 1 unit the time taken is between 5 to 6 minutes.
Every value in the interval 5 - 6 has equal probability.
The distribution of the time it takes to manufacture the products can be explained by the continuous Uniform distribution.
The probability density function of a continuous Uniform distribution is: