Answer:
a). 0.03593, 0.27425
(bl 0.0703
(c) the lifespan of such bulb is less than 210 days
(d) 0.0298.
Explanation:
Given that U = 300, sd= 50
Z = X-U/sd
(a) We find the probability
Pr(X<210) = Pr(Z<(210-300)/50)
= Pr(Z<-1.8)
= 0.03593
Pr(X >330) = Pr(Z >(330-300)/50))
= Pr(Z> 0.6)
= 1- PR(Z<0.6) = 1 - 0.72575
Pr(X>330)= 0.27425
(b) Pr(280< X< 330) = Pr( 280 < Z< 380)
= Pr([280-300/50] < Z < [380-300/50])
= Pr(0.4 < Z < 1.6)
= Pr(Z< 1.6) - Pr(Z < 0.4)
=0.72575 - 0.65542
= 0.07033
= 0.0703
(c) the lifespan of such bulbs is less than 210 days
(d) given n = 6, x = 4 ,
Pr(X>330) = 0.27425 = p
q = 1-p = 0.72575
Pr(X=4) = 6C4 × (0.27425)⁴ ×(0.72575)²
Pr(X=4) = 10 × 0.005657 × 0.52671
Pr(X= 4) = 0.029795
Pr(X= 4) = 0.0298