225k views
1 vote
Assume that x and y are both differentiable functions of t and find the required values of dy/dt and dx/dt. x2 + y2 = 25 (a) Find dy/dt, given x = 3, y = 4, and dx/dt = 5. dy/dt = -3/4 Incorrect: Your answer is incorrect. (b) Find dx/dt, given x = 4, y = 3, and dy/dt = –5.

1 Answer

7 votes

Answer:

(a)
(dy)/(dt)=-3(3)/(4)

(b)
(dx)/(dt)=3(3)/(4)

Explanation:


x^(2) +y^(2)=25

Take
(d)/(dt) of of each term.


(d)/(dt)(x^(2))+(d)/(dt)(y^(2))=(d)/(dt)(25)\\\\((d)/(dx)(x^(2))*(dx)/(dt)) +((d)/(dy)(y^(2))*(dy)/(dt))=(d)/(dt)(25)\\\\2x(dx)/(dt) +2y(dy)/(dt) = 0\\\\

For Question a


2y(dy)/(dt)=-2x(dx)/(dt)\\\\(dy)/(dt)=(-2x(dx)/(dt))/(2y) \\\\(dy)/(dt)=-(x)/(y)(dx)/(dt)

Given that x = 3, y = 4, and dx/dt = 5.


(dy)/(dt)=-(3)/(4)*5=-(15)/(4)\\ \\(dy)/(dt)=-3(3)/(4)

For Question b


2x(dx)/(dt)=-2y(dy)/(dt)\\\\(dx)/(dt)=(-2y(dy)/(dt))/(2x) \\\\(dx)/(dt)=-(y)/(x)(dy)/(dt)

Given that x = 4, y = 3, and dx/dt = -5.


(dx)/(dt)=-(3)/(4)*-5=(15)/(4)\\ \\(dx)/(dt)=3(3)/(4)

User WelcomeTo
by
3.2k points