Answer:
See explanation below
Step-by-step explanation:
In this case, let's write the equation again:
A <------> B Keq = ?
As we are using standard conditions, we can assume we have a temperature of 0 °C (273 K) and 1 atm.
To get the equilibrium constant we only do the following:
Keq = [B] / [A]
However, the problem is asking the reverse equilibrium constant (because of the ' in Keq'), so, we have to do the reverse division:
Keq' = [A]/[B]
Replacing the given values of A and B:
Keq' = 1.5/0.5 = 3
We have the equilibrium constant, we can calculate now the gibbs free energy with the following expression:
ΔG°' = -RTlnKeq'
As Keq' is > 1, the negative logaritm will result into a negative result or a number < 0, so, calculating this we have:
ΔG°' = -8.31 * 273 ln3
ΔG°' = -2.492.34 J