Answer:
The answers to the questions are;
(a) The velocity at the center of the pipe is 21.44 ft/s
(b) The velocity at the wall of the pipe is 0 ft/s
(c) The velocity at a distance of 0.6 inches from the center-line is 19.63 ft/s.
Step-by-step explanation:
To solve the question, we note that
The velocity profile in the cross section of a circular pipe with laminar flow is given by
U = 2×v×[1 - (r/r₀)²]
Where
U = The sought velocity at a point
r = Pipe radius where velocity is sought
r₀ = Internal radius of pipe = for 2-in Schedule 40 steel pipe = 2.067 in 52.6 mm
v = Average velocity of flow = 10.72 ft/s = 3.2675 m/s
Therefore we have
(a) The velocity at the center of the pipe
At the center r = 0 so we have
U = 2×v×[1 - (r/r₀)²]
At center U = 2×10.72 ft/s×[1 - (0/2.067 in)²] = 2×10.72 ft/s = 21.44 ft/s
(b) The velocity at the wall of the pipe is given by
r = r₀ ⇒ U = 2×v×[1 - (r/r₀)²] ⇒ U = 2×v×[1 - (r₀/r₀)²]
= U = 2×v×[1 - (1)²] = 2×v×0 = 0
The velocity at the wall of the pipe is 0 ft/s
(c) The velocity at a distance of 0.6 inches from the center-line is given by
U = 2×v×[1 - (r/r₀)²] = 2×10.72 ft/s×[1 - (0.6/2.067)²] = 19.63 ft/s.